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Abstract 9 

Wood is an essential component of rivers and plays a significant role in ecology and morphology. It can 10 

be also considered as a risk factor in rivers due to its influence on erosion and flooding. Quantifying and 11 

characterizing wood fluxes in rivers during floods would improve our understanding of the key processes but 12 

is hindered by technical challenges. Among various techniques for monitoring wood in rivers, streamside 13 

videography is a powerful approach to quantify different characteristics of wood in rivers, but past research 14 

has employed a manual approach that has many limitations. In this work, we introduce new software for the 15 

automatic detection of wood pieces in rivers. We apply different image analysis techniques such as static and 16 

dynamic masks, object tracking, and object characterization to minimize false positive and missed detections. 17 

To assess the software performance, results are compared with manual detections of wood from the same 18 

videos, which was a time-consuming process. Key parameters that affect detection are assessed including 19 

surface reflections, lighting conditions, flow discharge, wood position relative to the camera, and the length 20 

of wood pieces. Preliminary results had a 36% rate of false positive detection, primarily due to light reflection 21 

and water waves, but post-processing reduced this rate to 15%. The missed detection rate was 71% of piece 22 

numbers in the preliminary result, but post processing reduced this error to only 6.5% of piece numbers, and 23 

13.5% of volume. The high precision of the software shows that it can be used to massively increase the 24 

quantity of wood flux data in rivers around the world, potentially in real time. The significant impact of post-25 

processing indicates that it is necessary to train the software in various situations (location, timespan, weather 26 

conditions) to ensure reliable results. Manual wood detections and annotations for this work took more than 27 

one human-month of labor. In comparison, the presented software coupled with an appropriate post pro-28 

cessing step performed the same task in real time (55 hr) on a standard desktop computer. 29 
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1. Introduction 32 

Floating wood has a significant impact on river morphology (Gurnell et al., 2002; Gregory et al., 2003; 33 

Wohl, 2013; Wohl and Scott, 2017). It is both a component of stream ecosystems and a source of risk for 34 

human activities (Comiti et al., 2006; Badoux et al., 2014; Lucía et al., 2015).  The deposition of wood at 35 

given locations can cause a reduction of the cross-sectional area, which can both increase upstream water 36 

levels (and the risk for neighboring communities), and laterally concentrate the flow downstream, which can 37 

lead to damaged infrastructure (Lyn et al., 2003; Lagasse, 2010; Mao and Comiti, 2010; Badoux et al., 2014; 38 

Ruiz-Villanueva et al., 2014; De Cicco et al., 2018; Mazzorana et al., 2018). Therefore, understanding and 39 

monitoring the dynamics of wood within a river is fundamental to assess and mitigate risk. An important 40 

body of work on this topic has grown over the last two decades, which has led to the development of many 41 

monitoring techniques (Marcus et al., 2002; MacVicar et al., 2009a; MacVicar and Piégay, 2012; Benacchio 42 

et al., 2015; Ravazzolo et al., 2015; Ruiz-Villanueva et al., 2018; Ghaffarian et al., 2020; Zhang et al., 2020) 43 

and conceptual and quantitative models (Braudrick and Grant, 2000; Martin and Benda, 2001; Abbe and 44 

Montgomery, 2003; Gregory et al., 2003; Seo and Nakamura, 2009; Seo et al., 2010). A recent review by 45 

Ruiz-Villanueva et al. (2016), however, argues that the area remains in relative infancy compared to other 46 

river processes such as the characterization of channel hydraulics and sediment transport. Many questions 47 

remain open areas of inquiry including wood hydraulics, which is needed to understand wood recruitment, 48 

movement and trapping, and wood budgeting, where better parametrization is needed to understand and 49 

model the transfer of wood in watersheds at different scales. 50 

In this domain, the quantification of wood mobility and wood fluxes in real rivers is a fundamental 51 

limitation that constrains model development. Most early works were based on repeated field surveys (Keller 52 

and Swanson, 1979; Lienkaemper and Swanson, 1987), with more recent efforts taking advantage of aerial 53 

photos or satellite images (Marcus et al., 2003; Lejot et al., 2007; Lassettre et al., 2008; Senter and Pasternack, 54 

2011; Boivin et al., 2017) to estimate wood delivery at larger time scales of 1 year up to several decades. 55 

Others have monitored wood mobility once introduced by tracking wood movement in floods (Jacobson et 56 

al., 1999; Haga et al., 2002; Warren and Kraft, 2008). Tracking technologies such as active and passive Radio 57 

Frequency Identification transponders (MacVicar et al., 2009a; Schenk et al., 2014) or GPS emitters and 58 

https://doi.org/10.5194/esurf-2020-96
Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

receivers (Ravazzolo et al., 2015) can improve the precision of this strategy. To better understand wood flux, 59 

specific trapping structures such as reservoirs or hydropower dams can be used to sample the flux over time 60 

interval windows (Moulin and Piégay, 2004; Seo et al., 2008; Turowski et al., 2013). Accumulations up-61 

stream of a retention structure can also be monitored where they trap most or all of the transported wood, as 62 

was observed by Boivin et al. (2015), to quantify wood flux at the flood event or annual scale. All these 63 

approaches allow the assessment of wood budget and the in-channel wood exchange between geographical 64 

compartments within a given river reach and over a given period (Schenk et al., 2014; Boivin et al., 2015, 65 

2017). 66 

For finer scale information on the transport of wood during flood events, video recording of the water 67 

surface is suitable for estimating instantaneous fluxes and size distributions of floating wood in transport 68 

(Ghaffarian et al., 2020). Classic monitoring cameras installed on the river bank are cheap and relatively easy 69 

to acquire, setup and maintain. As is seen in Table 1, a wide range of sampling rates and spatial/temporal 70 

scales have been used to assess wood budgets in rivers. MacVicar and Piégay (2012) and Zhang et al., (2020) 71 

(in review), for instance, monitored wood fluxes at 5 frames per second (fps) and a resolution of 640 × 480 72 

up to 800 × 600 pixels. Boivin et al. (2017) used a similar camera and frame rate as MacVicar and Piégay 73 

(2012) to compare periods of wood transport with and without the presence of ice. Senter et al. (2017) ana-74 

lyzed the complete daytime record of 39 days of videos recorded at 4 fps and a resolution of 2048 × 1536 75 

pixels. Conceptually similar to the video technique, time-lapse imagery can be substituted when large rivers 76 

where surface velocities are low enough and the field of view is large. Kramer and Wohl (2014); Kramer et 77 

al. (2017) applied this technique in the Slave River (Canada) and recorded one image every 1 and 10 minutes. 78 

Where possible, wood pieces within the field of view are then visually detected and measured using simple 79 

software to measure the length and diameter of the wood to estimate wood flux (piece/s) or wood volume 80 

(𝑚3/𝑠) (MacVicar and Piégay, 2012; Senter et al., 2017). Critically for this approach, the time it takes for 81 

the researchers to extract information about wood fluxes has limited the fraction of the time that can be 82 

reasonably analyzed. Given the outdoor location for the camera, the image properties depend heavily on 83 

lighting conditions (e.g. surface light reflections, low light, ice, poor resolution or surface waves) which may 84 

also limit the accuracy of frequency and size information (Muste et al., 2008; MacVicar et al., 2009a). In 85 

such situations, simpler metrics such as a count of wood pieces, a classification of wood transport intensity, 86 

or even just a binary presence/absence may be used to characterize the wood flux (Boivin et al., 2017; Kramer 87 

et al., 2017). 88 
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Table 1 

A fully automatic wood detection and characterization algorithm can greatly improve our ability to 89 

exploit the vast amounts of data on wood transport that can be collected from streamside video cameras. 90 

From a computer science perspective, however, automatic detection and characterization remain challenging 91 

issues. In computer vision, detecting objects within videos typically consists of separating the foreground 92 

(the object of interest) from the background (Roussillon et al., 2009; Cerutti et al., 2011, 2013). The basic 93 

hypothesis is that the background is relatively static and covers a large part of the image, allowing it to be 94 

matched between successive images. In the riverine environments, however, such an assumption is unrealistic 95 

because the background shows a flowing river, which can have rapidly fluctuating properties (Ali and 96 

Tougne, 2009). Floating objects are also partially submerged in water that has high suspended material con-97 

centrations during floods, making them only partially visible (e.g. a single piece of wood may be perceived 98 

as multiple objects) (MacVicar et al., 2009b). Detecting such an object in motion within a dynamic back-99 

ground is an area of active research (Ali et al., 2012, 2014; Lemaire et al., 2014; Piégay et al., 2014; Be-100 

nacchio et al., 2017). Accurate object detection typically relies on the assumption that objects of a single 101 

class (e.g. faces, bicycles, animals, etc.) have a distinctive aspect or set of features that can be used to distin-102 

guish between types of objects. With the help of a representative dataset, machine learning algorithms aim 103 

at defining the most salient visual characteristics of the class of interest (Lemaire et al., 2014; Viola and 104 

Jones, 2006). When the objects have a wide intra-class aspect range, a large amount of data can compensate 105 

by allowing the application of deep learning algorithms (Gordo et al., 2016; Liu et al., 2020). To our 106 

knowledge, such a database is not available in the case of floating wood. 107 

The camera installed on the Ain River in France has been operating more or less continuously for over 108 

10 years and vast improvements in data storage mean that this data can be saved indefinitely (Zhang et al., 109 

2020). The ability to process this image database to extract the wood fluxes allows us to integrate this infor-110 

mation over floods, seasons and years, which would allow us to significantly advance our understanding of 111 

the variability within and between floods over a long time period. An unsupervised method to identify float-112 

ing wood in these videos by applying intensity, gradient and temporal masks was developed by Ali and 113 

Tougne (2009) and Ali et al. (2011). In this model, the objects were tracked through the frame to ensure that 114 

they followed the direction of flow. An analysis of about 35 minutes of the video showed that approximately 115 

90% of the wood pieces was detected (i.e. about 10% of detection were missed), which confirmed the poten-116 

tial utility of this approach. An additional set of false detection related to surface wave conditions amounted 117 

to approximately 15% of the total detection. However, the developed algorithm was not always stable and 118 
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was found to perform poorly when applied to a larger data set. 119 

The objectives of the presented work are to describe and validate a new algorithm and computer inter-120 

face for quantifying floating wood pieces in rivers. First, the algorithm procedure is introduced to show how 121 

wood pieces are detected and characterized. Second, the computer interface is presented to show how manual 122 

annotation is integrated with the algorithm to train the detection procedure.  Third, the procedure is validated 123 

using data from the Ain River. The validation period occurred over six days in January and December 2012 124 

where flow conditions ranged from ~400 𝑚3/𝑠, which is below bankfull discharge but above the wood 125 

transport threshold, to more than 800 𝑚3/𝑠. The developed algorithm can be used to characterize wood 126 

pieces for a large image database at the study site.  Future applications of this approach at a wide range of 127 

sites should lead to new insights on the variability of wood pieces at the reach and watershed scales in world 128 

rivers. 129 

2. Methodological procedure for automatic detection of wood 130 

The algorithm for wood detection comprises a number of steps that seek to locate objects moving 131 

through the field of view in a series of images and then identify the objects most likely to be wood. The 132 

algorithm used in this work modifies the approach described by Ali et al., (2011). The steps work from a 133 

pixel to image to video scale, with the context from the larger scale helping to assess whether the information 134 

at the smaller scale indicates the presence of floating wood or not. In a still image, a single pixel is charac-135 

terized by its location within the image, its color and its intensity. Looking at its surrounding pixels, on an 136 

image scale, allows that information to be spatially contextualized. Meanwhile, the video data adds temporal 137 

context, so that previous and future states of a given pixel can be used to assess its likeliness of representing 138 

floating wood. Since an image is only a discrete 2D representation of the real 3D world, details about the 139 

camera parameters such as optical image deformations, geographic situation, perspective deformations or 140 

behavior regarding luminosity can be used to infer what wood should look like and where it should occur. 141 

On a video scale, the method can embed expectations about how wood pieces should move through frames, 142 

how big they should be, and how lighting and weather conditions can evolve to change the expectations of 143 

wood appearance, location, and movement. The specific steps followed by the algorithm are shown in a 144 

simple flow chart (Fig 1.a). An example image with a wood piece in the middle of the frame is also shown 145 

for reference (Fig 1.b).  146 

Fig 1 
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 Wood probability masks  147 

In the first step, each pixel was analyzed individually and independently. The static probability mask 148 

answers the question “is one pixel likely to belong to a wood-block, given its color and intensity?”. The 149 

algorithm assumes that the wood pixels can be identified by pixel light intensity (𝑥) following a Gaussian 150 

distribution (Fig 2.a). To set the algorithm parameters, manual annotations of wood are used to obtain a 151 

representative sample of wood pixels, from which both the mean (𝜇) and standard deviation (𝜎) are calcu-152 

lated.  This procedure produces a static probability mask (Fig 2.b). From this figure, it is possible to identify 153 

the sectors where wood presence is likely, which includes the floating wood piece seen in Fig 1.b, but also 154 

includes standing vegetation in the lower part of the image and a shadowed area in the upper left. The ad-155 

vantage of this approach is that it is computationally very fast. However, misclassification is possible, par-156 

ticularly when light condition changes. 157 

Fig 2 

The second mask, called the dynamic probability mask, outlines each pixel’s recent history. The corre-158 

sponding question is: “is this pixel likely to represent wood now, given its past and present characteristics?”. 159 

Again, this step is based on what is most common in our database: it is assumed that a wood pixel is darker 160 

than a water pixel. Depending on lighting conditions like shadows cast on water or waves, this is not always 161 

true, i.e. water pixels can be as dark as wood pixels. However, pixels displaying successively water then 162 

wood tend to become immediately and significantly darker, while pixels displaying wood then water tend to 163 

become significantly lighter. Meanwhile, pixels that keep on displaying wood tend to be rather stable. Thus, 164 

we assign wood pixel probability according to an updated version of the function proposed by Ali et al. 165 

(2011) (Fig 3.a) that takes 4 parameters. This function 𝐻 is an updating function, which produces a temporal 166 

probability mask from the inter-frame pixel value. On a probability map, a pixel value ranges from -1 (likely 167 

not wood) to 1 (likely wood). The temporal mask value for a pixel at location (𝑥, 𝑦)  and at time 𝑡  is 168 

𝑃𝑇(𝑥, 𝑦, 𝑡)= 𝐻(∆𝑡 , 𝐼) + 𝑃𝑇(𝑥, 𝑦, 𝑡 − 1). We apply a threshold to the output of 𝑃𝑇(𝑥, 𝑦, 𝑡) so that it always 169 

stays within the interval [0,1]. The idea is that a pixel that becomes suddenly and significantly darker is 170 

assumed to be likely wood. 𝐻(∆𝑡 , 𝐼) is such that under those conditions, it increases the pixel probability map 171 

value (parameters 𝜏 and 𝛽). A pixel that becomes lighter over time is unlikely to correspond to wood (pa-172 

rameter 𝛼). A pixel which intensity is stable and that was previously assumed to be wood shall still corre-173 

spond to wood, while a pixel which intensity is stable and which probability to be wood was low is unlikely 174 

to represent wood now. A small decay factor (𝛿) was introduced in order to prevent divergence (in particular, 175 
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it prevents noisy areas from being activated too frequently). 176 

Fig 3 

The final wood probability mask is created using a combination of both the static and dynamic proba-177 

bility masks. Wood objects thus had to have a combination of the correct pixel color and the expected tem-178 

poral behavior of water-wood-water color. The masks were combined assuming that both probabilities are 179 

independent, which allowed us to use the Bayesian probability rule in which the probability masks are simply 180 

multiplied, pixel by pixel, to obtain the final probability value for each pixel of every frame. 181 

 Wood object identification and characterization  182 

From the probability mask it is necessary to group pixels with high wood probabilities into objects and 183 

then to separate these objects from the background to track them through the image frame. For this purpose, 184 

pixels were classified as high-or low-probability based on a threshold applied to the combined probability 185 

mask. Then, the high-probability pixels were grouped into connected components (that is, small, contiguous 186 

regions on the image) to define the objects. At this stage, a pixel size threshold was applied on the detected 187 

objects so that only the bigger objects were considered to represent woody objects on the water surface (Fig 188 

4.a the big white region at the middle). A number of smaller components were often related to non-wood 189 

objects, for example waves, reflections, or noise from the camera sensor or data compression.  190 

After the size thresholding step, movement direction and velocity were used as filters to distinguish real 191 

objects from false detections. The question here is, “is this object moving through the image frame the way 192 

we would expect floating wood to move?”. To do this, the spatial and temporal behavior of components were 193 

analyzed. First, to deal with partly immersed objects, we agglomerated multiple objects within frames as 194 

components of a single object if the distance separating them was less than a set threshold. Second, we asso-195 

ciated wood objects in successive frames together to determine if the motion of a given object was compatible 196 

with what is expected from driftwood. This can be achieved according to the dimensionless parameter 197 

“𝑃𝑇 ∆𝑇⁄ ”, which provides a general guideline for the distance an object pass between two consecutive frames 198 

(Zhang et al., 2020). Here 𝑃𝑇 (passing time) is the time that one piece of wood passes through the camera 199 

field of view and ∆𝑇 is the time between two consecutive frames and practically it is recommended to use 200 

videos with 𝑃𝑇 ∆𝑇⁄ > 5 in this software. In our case, tracking wood is rather difficult for classical object 201 

tracking approaches in computer vision: the background is very noisy, the acquisition frequency is low and 202 

the objects appearance can be highly variable due to temporarily submerged parts and highly variable 3D 203 
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structures. Given these considerations it was necessary to use very basic rules for this step. The rules are 204 

therefore based on loose expectations, in terms of pixel intervals, on the motions of the objects, depending 205 

on the camera location and the river properties.  How many pixels is the object likely to move between image 206 

frames from left to right? How many pixels from top to bottom? How many appearances are required? How 207 

many frames can we miss because of temporary immersions? Using these rules, computational costs re-208 

mained low and the analysis could by run in real-time while also providing good performance. 209 

Fig 4 

The final step was to characterize each object, which at this point in the process are considered wood 210 

objects. Each appears several times in different frames and a procedure is needed to either pick a single 211 

representative occurrence or use a statistic tool to analyse multiple occurrences to estimate characterization 212 

data. Here we assumed that the biggest occurrence, in terms of pixels number, was the most representative 213 

state. This assumption is based on the principle that a bigger number of pixels corresponds to a better or a 214 

fuller view (the object is less immersed than on other occurrences, for instance). This approach also matched 215 

the manual annotation procedure where we tended to pick the view where the object covers the largest area 216 

to make measurements. For the current paper, every object as characterized from the raw image based on its 217 

size and its location (in pixels). 218 

 Image rectification 219 

Warping images according to a perspective transform results in an important loss of quality. On warped 220 

images, areas of the image farther to the camera provide little detail and are overall very blurry and non-221 

informative. Therefore, given the topology of our images, image rectification was necessary to calculated 222 

wood length, velocity, volume and other characteristics from the saved pixel-based characterization of each 223 

object. To do so, the fisheye lens distortion was first corrected. A fisheye lens distortion is a characteristic of 224 

the lens that produces visual distortion intended to create a wide panoramic or hemispherical image. This 225 

effect was corrected by a standard Matlab process using the ComputerVisionToolboxTM. 226 

Ground-based cameras have also an oblique angle of view, which means that pixel to meter correspond-227 

ence is variable and images need to be orthorectified to obtain estimates of object size and velocity in real 228 

terms (Muste et al., 2008). Orthorectification refers to the process by which image distortion is removed and 229 

the image scale is adjusted to match the actual scale of the water surface. Translating from pixels to cartesian 230 

coordinates required us to assume that our camera follows the pinhole camera model and that the river can 231 
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be assimilated to a plane of constant altitude. Under such conditions, it is possible to translate from pixel 232 

coordinates to a metric 2D space thanks to a perspective transform assuming a virtual pinhole camera on the 233 

image and estimating the position of the camera and its principal point (center of the view). An example of 234 

orthorectification on a detected wood piece in a set of continuous frames and pixel coordinates (Fig 5.b) is 235 

presented in Fig 5.c in metrics coordinates. The transform matrix is obtained with the help of at least 4 non-236 

colinear points (Fig 5.a blue GCPs (Ground Control Points) acquired with DGPS) from which we know both 237 

the relative 2D metric coordinates for a given water level (Fig 5.c blue points), and their corresponding lo-238 

calization within the image(Fig 5.b blue points). To achieve better accuracy, it is advised to acquire additional 239 

points and to solve the subsequent over-determined system with the help of a Least Square Regression (LSR). 240 

Robust estimators such as RANSAC can provide useful to prevent acquisition noise. After identifying the 241 

virtual camera position, the perspective transform matrix then becomes parameterized with the water level. 242 

Handling the variable water level was performed for each piece of wood, by measuring the relative height 243 

between the camera and the water level at the time of detection based on information recorded at the gauging 244 

station to which the camera was attached.  245 

Fig 5 

3. User interface 246 

The software was developed to provide a single environment for the analysis of wood pieces on the 247 

surface of the water from streamside videos.  It consists of four distinct modules: Detection, Annotation, 248 

Learning, and Performance. The home screen (Fig 6) allows the operator to select any of these modules. 249 

From within a module, a menu bar on the left side of the interface allows operators to switch from one module 250 

to another. In the following sections, the operation of each of these modules are described. 251 

Fig 6 

 Detection 252 

The detection module is the heart of the software. This module allows, from learned or manually spec-253 

ified parameters, the detecting of floating objects without human intervention (see Fig 7). This module con-254 

tains two main parts: (i) Detection tab, which allows operator to open, analyze and export the results from 255 

one video or a set of videos, and (ii) Configuration tab, which allows operator to load and save the software 256 

configuration by defining the parameters of wood detection (as described in Sect 2), saving and extracting 257 

the results, and displaying the interface.  258 
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The detection process is intended to work as a video file player. The idea is to load a video file (or a 259 

stream url), and to let the software read the video until the end. When required, the reader generates a visual 260 

output, showing how the masks behave by adding color and information to the video content (see Figure 7). 261 

A small textual display area shows the frequency of past detections. Meanwhile, the software generates a 262 

series of files summarizing the positive outputs of the detection. They consist in YAML and CSV files, as 263 

well as image files to show the output of different masks, the original frames, etc. A configuration tab is 264 

available, and provides many parameters organized by various categories. The main configuration tab is 265 

divided in seven parts. The first part is dedicated to general configurations such as frame skipped between 266 

each computation and defining the areas within the frame where wood is not expected (e.g. bridge pier or 267 

river bank). In the second and third parts, the parameters of the intensity and temporal masks are listed (see 268 

Sect 2.1). The default values are 𝜇 = 0.2 and 𝜎 = 0.08 for the intensity mask, and 𝜏 = 0.25 and 𝛽 = 0.45 269 

for the temporal mask. In the fourth and fifth parts, object tracking and characterization parameters are de-270 

fined respectively as described in Sect 2.2. Detection time is defined in the sixth part using an optical char-271 

acter recognition technique. Finally, the parameters of the orthorectification (see Sect 2.3) are defined in the 272 

seventh part. The detection software can be used to process videos in batch (“script” tab), without generating 273 

a visual output to save computing resources.  274 

Fig 7 

 Annotation 275 

As mentioned in Sec. 2, the detection procedure requires the classification of pixels and objects into 276 

wood and non-wood categories. To train and validate the automatic detection process, a ground-truth or set 277 

of videos with manually annotations are required. Such annotations can be performed using different tech-278 

niques. For example, objects can be identified with the help of a bounding box or selection of endpoints, as 279 

in MacVicar and Piégay(2012); Ghaffarian et al., (2020) and Zhang et al., (2020). It is also possible to sample 280 

wood pixels without specifying instances or objects, or to sample pixels within annotated objects. Finally, 281 

objects and/or pixels can be annotated multiple times in a video sequence to increase the amount and detail 282 

of information in such an annotation database. However, this annotation process is time-consuming, so a 283 

trade-off must be made between training and accuracy for different lighting conditions, camera parameters, 284 

wood properties, and river hydraulics. 285 

Given that the tool is meant to be as flexible as possible, the annotation tool was developed to allow 286 

operator to perform as fine annotation as they wish. As it is shown in Fig 8, this module contains three main 287 
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parts: (i) The column on the far left allows operator to switch to another module (detection, learning or per-288 

formance), (ii) the central part consists of a video player with a configuration tab for extracting the data, and 289 

(iii) the right part where the tools to generate, create, visualize and save annotations are located. The tools 290 

allow rather quick coarse annotation, similar to what was done by MacVicar and Piégay (2012) and Boivin 291 

et al., (2015), while still allowing the possibility of finer pixel-scale annotation. 292 

Fig 8 

The principle of this module is to associate annotations with the frames of a given video. Annotating a 293 

piece of wood is like drawing its shape, directly on a frame of the video, using the drawing tools provided by 294 

the module. It is possible to add a text description to each annotation. Each annotation is linked to a single 295 

frame of the video; however, a frame can contain several annotations. An annotated video, therefore, consists 296 

of a video file, as well as a collection of drawings, possibly with textual descriptions, associated with frames. 297 

It is possible to link annotations from one frame to another to signify that they belong to the same piece of 298 

wood. These data can be used to learn the movement of pieces of wood in the frame. 299 

 Performance 300 

The performance module allows the operator to set rules to compare automatic and manual wood de-301 

tection results. This section also allows the operator to use a bare, pixel-based annotation or specify an or-302 

thorectification matrix to extract wood-size metrics directly from the output of an automatic detection.  303 

For this module an automatic detection file is first loaded and then the result of this detection is com-304 

pared with a manual annotation for that video, if the latter is available. Comparison results are then saved in 305 

the form of a summary file (*.csv format), allowing the operator to perform statistical analysis of the results 306 

or the performance of the detection algorithm. A manual annotation file can only be loaded if it is associated 307 

with an automatic detection result. 308 

The performance of the detected algorithm can be realized on several levels: 309 

• Object. The idea is to annotate one (or more) occurrences of a single object, and to operate the 310 

comparison at bounding box scale. A detected object may comprehend a whole sequence of occur-311 

rences, on several frames. It is validated when only a single occurrence happens to be related to an 312 

annotation. This is the minimum possible effort required to have an extensive overview of the 313 

object frequency on such an annotations database. This approach can however lead us to misjudge 314 
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overall wrongly detected sequences as True Positives (see below), or vice-versa. 315 

• Occurrence. The idea is to annotate, even roughly, every occurrence of every woody object, so that 316 

the comparison can happen between bounding boxes rather than at pixel level. Every occurrence 317 

of any detected object can be validated individually. This option requires substantially more anno-318 

tation work than the object annotation. 319 

• Pixel. This case implies that every pixel of every occurrence of every object is annotated as wood. 320 

It is very powerful in the event of evaluating the algorithm performances, and eventually refining 321 

its parameters with the help of some machine learning technique. However, it requires an extensive 322 

annotation work. 323 

4. Performance assessment 324 

To assess the performance of the automatic detection algorithm, we used a set of videos from the Ain 325 

River in France that were both comprehensively manually annotated and automatically analyzed. According 326 

to the data annotated by the observer, the performance of the software can be affected by different conditions: 327 

(i) wood piece length, (ii) distance from the camera, (iii, iv) wood X, Y position, (v) flow discharge, (vi) 328 

daylight, and (vii, viii) light and darkness of the frame (see Table 2). If for example software detects a 1 cm 329 

piece at a distance of 100 m from the camera, there is a high probability that this is a false positive detection. 330 

Therefore, knowing the performance of the software in different conditions, it is possible to develop some 331 

rules to enhance the quality of data.  The advantage of this approach is that all eight parameters introduced 332 

here are accessible easily in the detection process. In this section the monitoring details and annotation meth-333 

ods are introduced before the performance of the software is evaluated by comparing the manual annotations 334 

with the automatic detections. 335 

Table 2 

 Material and methods 336 

4.1.1. Monitoring site and annotation 337 

The Ain River is a piedmont river with a drainage area of 3630 𝑘𝑚2 at the gauging station of Chazey-338 

sur-Ain, with a mean flow width of 65 m, a mean slope of 0.15%, and a mean annual discharge of 120 𝑚3/𝑠. 339 

The lower Ain River is characterized by an active channel shifting within a forested floodplain (Lassettre et 340 

al., 2008). An AXIS221 Day/NightTM camera with a resolution of 768 × 576 pixels was installed at this station 341 
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to continuously record the water surface of the river at a maximum frequency of 5 fps (Fig 9). This camera 342 

replaced a lower resolution camera at the same location used by MacVicar and Piégay (2012).  The specific 343 

location of the camera is on the outer bank of a meander, on the side closest to the thalweg, at a height of 9.8 344 

m above the base flow elevation. The meander and a bridge pier upstream help to steer most of the floating 345 

wood so that it passes relatively close to the camera where it can be readily detected with a manual procedure 346 

(MacVicar and Piégay, 2012).  The transformation matrix at the base flow elevation with the camera as the 347 

origin is shown in Fig 10.  Straight lines near the edges of the image appear curved because the fisheye 348 

distortion has been corrected on this image (see Sect 2.3); conversely, a straight line, in reality, is presented 349 

without any curvature in the image. 350 

Fig 9 

Fig 10 

The survey period examined on this river was during 2012 from which two flood events, (January 1-7 351 

and December 15) were selected for annotation. A range of discharges from 400𝑚3/𝑠 to 800 𝑚3/𝑠 occurred 352 

during these periods (Fig 11), which is above a previously observed wood transport threshold of ~300 𝑚3/𝑠 353 

(MacVicar and Piégay, 2012). The flow discharge is available from the website (www.hydro.eaufrance.fr). 354 

On January 3rd and 5th, a spider was active in front of the camera, which prevented a good video recording 355 

and these days were therefore removed from the database. Detection was only possible during the daylight. 356 

A summary of automated and manual detections for the six days is shown in Table 3. 357 

Fig 11 

4.1.2. Assessment Methodology 358 

Ghaffarian et al. (2020), Zhang et al. (2020) show that the wood discharge can be measured from flux 359 

or frequency of wood objects.  An object level detection was thus sufficient for the larger goals of this re-360 

search at the Ain River, which is to get a complete budget of transported wood volume.  361 

A comparison of annotated with automatic object detections gives rise to three options: 362 

1- True Positive (𝑇𝑃): an object is correctly detected and is recorded in both the automatic and annotated 363 

database 364 

2- False Positive (𝐹𝑃): an object is incorrectly detected and is recorded only in the automatic database. 365 

3- False Negative (𝐹𝑁): an object is not detected automatically and is only recorded in the annotated 366 
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database. 367 

Despite overlapping occurrences of wood objects in the two databases, the objects could vary in position 368 

and size between them.  For the current study we set the TP threshold as the case where either at least 50% 369 

of the automatic and annotated bounding box areas were common or at least 90% of an automatic bounding 370 

box area was part of its annotated counterpart. 371 

In addition to the raw counts of 𝑇𝑃𝑠, 𝐹𝑃𝑠, and 𝐹𝑁𝑠, we defined two measures of the performances of 372 

the application, where: 373 

• Recall Rate (𝑅𝑅) is the fraction of wood objects that are automatically detected ( 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)); and 374 

• Precision Rate (𝑃𝑅) is the fraction of detected objects that are wood (𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)). 375 

The higher the 𝑃𝑅 and the 𝑅𝑅 are, the more accurate our application is. However, both rates tend to 376 

interact. For example, it is possible to design an application that displays a very high 𝑅𝑅 (which means that 377 

it doesn’t miss many objects), but suffers from a very low 𝑃𝑅 (it outputs a high amount of inaccurate data), 378 

and vice-versa. Thus, we have to find a balance that is appropriate to each application. 379 

4.1.3. Factors used to understand variation in performance 380 

It was well known from previous manual efforts to characterize wood pieces and develop automated 381 

detection tools that it is easier to detect certain wood objects than others.  In general, the ability to detect the 382 

wood objects in the dynamic background of a river in flood was found to vary with the size of the wood 383 

object, its position in the image frame, the flow discharge, the amount and variability of the light, interference 384 

from other moving objects such as spiders, and other weather conditions such as wind and rain. In this section, 385 

we describe and define the metrics that were used to understand the variability of the detection algorithm 386 

performance.  387 

In general, more light results in better detection. The light condition can be varied by variation of a set 388 

of factors such as weather conditions or amount of sediment which is carried by the river. In any case, the 389 

daylight is a factor that can change the light condition systematically, i.e. low light early in the morning (Fig 390 

12.a), bright light at midday with potential for direct light and shadows (Fig 12.b), and low light again in the 391 

evening, though different from the morning because the hue is more bluish (Fig 12.c).  This effect of the time 392 

of day was quantified simply by noting the time of the image, which was marked on the top of each frame of 393 
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the recorded videos. 394 

Fig 12 

Detection is also strongly affected by the frame ‘roughness’, defined here as the variation in light over 395 

small distances in the frame. The change in light is important for the recognition of wood objects, but light 396 

roughness can also occur when there is a region with relatively light pixels due to something such as reflection 397 

of the surface of the water, and dark roughness can occur when there is a region with relatively dark pixels 398 

due to something such as shadows from the surface water waves. Detecting wood is typically more difficult 399 

around light roughness, which results in false negatives, while the color-map of a darker surface is often close 400 

to that of wood, which results in false positives. Both of these conditions can be seen in Fig 12 which is 401 

highlighted in Fig 12.a.  In general, the frame roughness increases in windy days or when there is an obstacle 402 

in the flow, such as downstream of the bridge pier in the current case. The light roughness was calculated for 403 

the current study by defining a light intensity threshold and calculating the ratio of pixels of higher value 404 

among the frame. The dark roughness is calculated in the same way, but in this case the pixels less than the 405 

threshold were counted. In this work thresholds equal to 0.9 and 0.4 were used for light and dark roughness, 406 

respectively. 407 

The oblique view of the camera means that the distance of the wood piece from the camera is another 408 

important factor in detection (Fig 13). The effect of distance on detection interacts with wood length, i.e. 409 

shorter pieces of wood that are not detectable near the camera may not be detectable toward the far bank due 410 

to the pixel size variation (Ghaffarian et al., 2020). Moreover, if a piece of wood passes through a region 411 

with high roughness (Fig 13) or amongst bushes or trees (Fig 13 right hand side) it is more likely that the 412 

software is unable to detect it. In our case, one day of video record could not be analyzed due to the presence 413 

of a spider that moved around in front of the camera.  414 

Fig 13 

Flow discharge is another key variable in wood detection. Increasing flow discharge generally means 415 

that water levels are higher, which brings wood close to the near bank of the river closer to the camera.  This 416 

change can make small pieces of wood more visible, but it also reduces the angle between the camera position 417 

and pixels, which makes wood farther from the camera harder to see.  High flows also tend to increase surface 418 

waves and velocity, which can increase the roughness of the frame and lead to the wood being intermittently 419 

submerged or obscured. More suspended sediment is carried during high flows which can change water 420 

https://doi.org/10.5194/esurf-2020-96
Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



16 

surface color and increase the opacity of the water.  421 

 Detection performance 422 

Automatic detection software performance was evaluated based on the event based 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 423 

raw numbers and the precision (PR) and recall rates (RR) using the default parameters in the software. On 424 

average, manual annotation resulted in the detection of approximately twice as many wood pieces as the 425 

detection software (Table 3). Measured over all the events, RR = 29%, which indicates that many wood 426 

objects were not detected by the software, while among detected objects about 36% were false detections 427 

(𝑃𝑅 = 64%).  428 

Table 3 

To better understand model performance, we first tested the correlation between the factors identified 429 

in the previous section (Table 4). As shown, the pairs of dark/light roughness, length/distance and dis-430 

charge/time were highly correlated (𝐶𝑜𝑟𝑟. = 0.59, 0.46, 0.37 respectively). For this reason, they were con-431 

sidered together to evaluate the performance of the algorithm within a given parameter space. The X/Y po-432 

sitions were also considered as a pair despite a relatively low correlation (0.15) because they represent the 433 

position of an object. As a note, the correlation between time and dark roughness is higher than discharge 434 

and time, but we used the discharge/time pair because discharge has a good correlation only with time.  As 435 

recommended by MacVicar and Piégay (2012), wood lengths were determined on a log base 2 transformation 436 

to better compare different classes of floating wood, similar to what is done for sediment sizes.   437 

Table 4 

Fig 14 

The presentation of model performance by pairs of correlated parameters clarifies certain strengths and 438 

weaknesses of the software (Figure 14). As expected, the results of Fig 14.b indicate that first, the software 439 

is not so precise for small pieces of wood (less than the order of 1 m), and second there is an obvious link 440 

between wood length and the distance from the camera so that by increasing the distance from the camera, 441 

the software is precise only for larger pieces of wood. Based on Fig 14.e, the software precision is usually 442 

better on the right side of the frame than the left side. It would be reasonable, as the software requires to 443 

detect a patch at least in 5 continuous frames to recognize it as a piece of wood (see Sect 2.2 and Fig 4 for 444 

more information). Therefore, most of the true positives are on the right side of the frame, where 5 continuous 445 

frames have already established. Also, the presence of the bridge pier (at X ≅ -30 to -40 m based on Fig 10) 446 
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in the upstream, produces lots of waves that decreases the precision of the software. Also, Fig 14.h shows 447 

that the software is much more precise during the morning when there is enough light rather than evening 448 

when the sunshine decreases. However, at low flow (𝑄 < 550 𝑚3/𝑠) the software precision decreases sig-449 

nificantly. Finally, based on Fig 14.k, the software does not work well in two roughness conditions: (i) in a 450 

dark smooth flow (light roughness ≅ 0) when there are some dark patches (shadows ) on the surface (dark 451 

roughness ≅ 0.3), and (ii) when both roughness increases and there are many noises in a frame.   452 

To estimate the fraction of wood pieces that the software did not detect, the recall rate 𝑅𝑅 is calculated 453 

in different conditions and a linear interpolation was applied on 𝑅𝑅 as it is presented in Fig 14, third column. 454 

According to Fig 14.c, 𝑅𝑅 is fully dependent on piece length so that for the lengths at the order of 10 m (𝐿 =455 

𝑂(10)) 𝑅𝑅 is very good. By contrast when 𝐿 = 𝑂(0.1~1) the 𝑅𝑅 is too small. There is a transient region 456 

when 𝐿 = 𝑂(1) which is slightly depends on the distance from the camera. One can say, the wood length is 457 

the most crucial parameter that affects the recall rate independent of the operator annotation. Based on Fig 458 

14.f, the 𝑅𝑅 is much better on the left side of the frame than on the right side. It can be because the operator’s 459 

eye needs some time to detect a piece of wood, so most of the annotations are on the right side of the frame. 460 

Having a small number of detections on the left side of the frame results in the small value of 𝐹𝑁 which 461 

followed by high values of 𝑅𝑅 in this region (𝑅𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). Therefore, while the position of detec-462 

tion plays a significant role in the recall rate, it is completely dependent on the operator bias. By contrast, 463 

frame roughness, daytime, and flow discharge do not play a significant role in the recall rate (Fig 14. i, l).  464 

 Post-processing 465 

This section is separated into two main parts. First, we show how to improve the precision of the soft-466 

ware by a posteriori distinction between 𝑇𝑃 and 𝐹𝑃. After removing 𝐹𝑃𝑠 from the detected pieces, in the 467 

second part, we test a process to predict the annotated data that the software missed i.e. false negatives. 468 

4.3.1. Precision improvement 469 

To improve the precision of the automatic wood detection we first ran the software to detect pieces and 470 

extracted the eight key parameters for each piece as described in Sect 4.1.3. We then estimated the total 471 

precision of each object, as the average of four precisions from each sub-figure of Fig 14. In the current study 472 

the detected piece was considered to be a true positive if the total precision exceeded 50%. To check the 473 

validity of this process, we used cross-validation by leaving one day out, calculating the precision matrices 474 

based on five other days, and applying the calculated 𝑃𝑅 matrices on the day that was left out. As is seen in 475 
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Table 5, this post-processing step increases the precision of the software to 85%, an enhancement of 21%. 476 

The degree to which the precision is improved is dependent on the day left out for cross-validation.  If, for 477 

example, the day left out had similar conditions to the mean, the 𝑃𝑅 matrices were well trained and were able 478 

to distinguish between 𝑇𝑃 and 𝐹𝑃 (e.g. 2nd Jan with 42% enhancement). On the other hand, if we have an 479 

event with new characteristics (e.g. very dark and cloudy weather or at discharges different from what we 480 

have in our database), the PR matrices were relatively blind and offered little improvement (e.g. 15th Dec 481 

with 10% enhancement). 482 

Table 5 

One difficulty with the post-processing reclassification of wood piece is that this new step can also 483 

introduce error by classifying real objects as false positives (making them a false negative) or vice-versa.  484 

Using the training data, we were able to quantify this error and categorized them as post-processed false 485 

negatives (𝑭𝑵𝒑𝒑) with an associated recall rate (𝑹𝑹𝒑𝒑).  As shown in Table 5, the precision enhancement 486 

process lost only around 14% of 𝑇𝑃𝑠 (𝑅𝑅𝑝𝑝= 86%). 487 

Instead of using all eight key parameters (four 𝑃𝑅 matrices) to calculate the overall precision, it is also 488 

possible to use other configurations by combining different matrices as it is shown in Fig 15. In this figure, 489 

the precision matrices 1 to 4 are the same as the matrices presented in Fig 14 and different colors show 490 

different combinations of these matrices. As it is seen, some configurations (e.g. (2,4) or (1,3,4)) result in 491 

better precision and some cases (e.g. (1,2) or (1,3)) there is almost no difference between post-processed 𝑃𝑅 492 

and the raw data. The reason that configurations like (2,4) or (1,3,4) with a better precision rate were not used 493 

here was that in these cases the post-processed recall rate 𝑅𝑅𝑝𝑝 was low (around 60%) meaning that by using 494 

these configurations many of true positives was removed. Therefore, to have the best precision enhancement 495 

with maximum post-processed recall rate all 4 different precision matrices are used (Fig 15, dark red scatters). 496 

Fig 15 

4.3.2. Modeling missed wood pieces based on the recall rate 497 

The automated software detected 29% of the number of manually annotated wood pieces (Table 5).  In 498 

the previous section, it was described how to enhance the precision of the software to ensure that these auto-499 

matically detected pieces are 𝑇𝑃𝑠. The larger question, however, is how to model the missing pieces.  Based 500 

on Fig 14, the software work well for very large objects in most areas of the image and in most lighting 501 

conditions.  However, the smaller pieces were found to be harder to detect, making the wood length the most 502 
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important factor governing the recall rate.  Based on this idea, the final step in the post processing is to apply 503 

a model to account for the smaller wood pieces. 504 

The model is based on the concept of a threshold piece length.  Above the threshold, wood pieces are 505 

likely to be accurately counting using the automatic software.  Below the threshold, on the other hand, the 506 

automatic detection software is likely to deviate from the manual counts. The actual length distribution was 507 

first determined based on the manual annotations (𝑇𝑃 + 𝐹𝑁) (Fig 16.a).  Also shown are the raw results of 508 

the automatic detection software (𝑇𝑃 + 𝐹𝑃) and the raw results with the false positives removed (𝑇𝑃). At 509 

this stage, the difference between the 𝑇𝑃 and the 𝑇𝑃 + 𝐹𝑁 lines are the false negatives (𝐹𝑁) that the software 510 

has missed. Comparison between the two lines shows that they tend to deviate between 2-3 m.  The correla-511 

tion coefficient between them was calculated for thresholds varying from 1 cm to 15 m length and 2.5 m 512 

length was defined as the optimum threshold length for recall modeling (Fig 16.b).  513 

In the next step we wanted to estimate the pieces less than 2.5 m that the software missed. During the 514 

automatic detection process, when the software detects a piece of wood, according to Fig 14 (third column), 515 

the 𝑅𝑅 can be calculated for this piece (same protocol as precision enhancement in Sect 4.3.1). Therefore, if 516 

for example the average recall rate for a piece of wood is 50%, there is likely to be another piece in the same 517 

condition (defined by the eight different parameters described in Table 2) that the software could not detect. 518 

To correct for these missed pieces, additional virtual pieces were added to the database. Fig 16.a, shows the 519 

length distribution after adding these virtual pieces to the database (blue line, total of 5841 pieces).  The result 520 

shows a good agreement between this and the operator annotations (green line, total of 6249 pieces), which 521 

results in a relative error of only 6.5% in the total number of wood pieces. 522 

Fig 16 

On the Ain River by separating videos to 15 min segments, MacVicar and Piégay, (2012) and Zhang et 523 

al., (2020) proposed the following equation for calculating wood discharge from the wood flux: 524 

𝑄𝑤 = 0.0086𝐹1.24     (1) 525 

where, Qw is the wood discharge (𝑚3/15𝑚𝑖𝑛) and F is the wood flux (piece number/15 min). Using 526 

this equation, the total volume of wood was calculated based on three different conditions: (i) operator anno-527 

tation (𝑇𝑃 + 𝐹𝑁), (ii) raw data of the detection software (𝑇𝑃 + 𝐹𝑃) and (iii) post-processed data of the de-528 

tection software (𝑇𝑃𝑚𝑜𝑑𝑒𝑙𝑒𝑑 ). Fig 17 shows a comparison of the total volume of wood from the manual 529 
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annotations in comparison with the raw and post-processed annotations from the detection software. As 530 

shown, the raw detection results underestimate wood volume by almost one order of magnitude.  After pro-531 

cessing, the results show some scatter but are distributed around the 1:1 slope, which indicates that they 532 

follow the manual annotation results.  There is a slight difference for days with lower fluxes (Jan 4 and 7), 533 

where the post-processing tends to over-estimate wood volumes, but in terms of an overall wood balance the 534 

volume of wood on these days are negligible. In total, 125 𝑚3  wood was annotated by the operator and the 535 

software automatically detected only 46 𝑚3, some of which represent false positives. After post-processing, 536 

142 𝑚3 wood was estimated to have passed in the analyzed videos for a total error of 13.5%.  537 

Fig 17 

5. Conclusion 538 

Here, we present new software for the automatic detection of wood pieces on the river surface. After 539 

presenting the corresponding algorithm and the user interface, an example of automatic detection was pre-540 

sented. We annotated 6 days of flood events that were used to first check the performance of the software 541 

and then develop post-processing steps to both remove possibly erroneous data and model data that were 542 

possibly missed by the software. 543 

To evaluate the performance of the software, we used precision and recall rates. The automatic detection 544 

software detects around one third of all annotated wood pieces with 64% precision rate. Then using the op-545 

erator annotations as the ultimate goal, the post-processing part was applied to extrapolate data extracted 546 

from detection results, aiming to come as close as possible to the annotations. It is shown that using four pair 547 

of key factors: (i) light and dark roughness of the frame, (ii) daytime and flow discharge, (iii) X, Y coordinates 548 

of detection position, and (iv) distance of detection as a function of piece length, it is possible to detect false 549 

positives and increase the software precision to 86%. Using the concept of a threshold piece length for de-550 

tection it is shown that it is then possible to model the missed wood pieces (false negatives).  In the presented 551 

results, the final recall rate results in a relative error of only 6.5% for piece number and 13.5% for wood 552 

volume. 553 

This work shows the feasibility of the detection software to detect wood pieces automatically.  Auto-554 

mation will significantly reduce the time and expertise required for manual annotation, making video moni-555 

toring a powerful tool for researchers and river managers to quantify the amount of wood in rivers. The 556 

https://doi.org/10.5194/esurf-2020-96
Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



21 

software should be applied in other rivers to test it in different contexts and enhance its accuracy. 557 
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Table 1 Characteristics of streamside video monitoring techniques in different studies. 

Article Sampling Temporal scales Camera resolution Study site 

MacVicar & Piégay (2012) 15 min segments 3 floods/18 hr/5 fps 640 × 480 Ain, France 

Kramer & Wohl (2014) Total duration 32 days/12761 frames/0.017 fps n/a Slave, Canada 

Boivin et al. (2017) Total duration 3 floods/150 hr/25 fps 640 × 480 St Jean, Canada 

Kramer et al. (2017) Total duration 11 months/0.0017 fps 1268 × 760 Slave, Canada 

Senter et al. (2017) 15 min segments 39 days/180 hr/4 fps 2048 × 1536 North Yuba, USA 

Ghaffarian et al. (2020) Total duration 2 floods/80 hr/1 fps 600 × 800 Isère, France 

Zhang et al. (2020) Total duration 7 floods & 1 windy period 

/183 hr/5 fps 

from 640 × 480  

up to 800 × 600 

Ain, France 

 

Table 2 Parameters used to assess the performance of the software 

Parameter Rational Metric 

Piece length Larger objects are easier to detect. 

Detecting an object in pixel coordinates. 

Transferring coordinates to metric. 

Calculating length, position, and distance. 

Distance Objects closer to the camera are easier to detect. 

X position Some particular areas of turbulent flow in the field of view 

affect detection (e.g. presence of a bridge pier). Y position 

Discharge 
Flow discharge affects water color, turbulence and the 

amount of wood. 

Recorded water elevation data and calibrated rat-

ing curve at hydrologic station. 

Time Luminosity of the frames varies with time of day. Time of day as indicated on top of each frame. 

Dark roughness Small spots with sharp contrast (either lighter or darker) af-

fect detection. 

% of pixels below an intensity threshold 

Light roughness % of pixels above an intensity threshold 

 723 

Table 3 Summary of automated and manual detections 

Date 
discharge (𝑚

3
/𝑠) Water level (𝑚) Detection 

time (ℎ𝑟) 

Number Precision 

rate% 

Recall 

rate% 
Qmax Qmin hmax hmin annot. det. 

1/1/2012 718 633 -7.4 -7.8 7 to 17 2282 972 77 33 

2/1/2012 772 674 -7.2 -7.6 7 to 17 802 380 52 24 

4/1/2012 475 423 -8.4 -8.6 7 to 17 140 158 20 22 

6/1/2012 786 763 -7.2 -7.2 7 to 17 712 384 54 29 

7/1/2012 462 430 -8.5 -8.6 7 to 17 117 73 40 25 

15/12/2012 707 533 -7.5 -8.2 9 to 14 1296 503 72 28 

Total 786 423 -7.2 -8.6 55 ℎ𝑟 5349 2470 64 29 
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Table 4 Correlation between parameters 
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Dark roughness 
 

0.59 -0.02 -0.04 0.04 0.1 0 0.57 

Light roughness 0.59 
 

-0.03 -0.03 0.03 0.09 -0.04 0.29 

Length -0.02 -0.03 
 

0.46 -0.45 -0.35 -0.02 -0.01 

Distance -0.04 -0.03 0.46 
 

-1 -0.16 0.14 -0.05 

X position 0.04 0.03 -0.45 -1 
 

0.15 -0.15 0.05 

Y position 0.1 0.09 -0.35 -0.16 0.15 
 

0 0.07 

Discharge 0 -0.04 -0.02 0.14 -0.15 0 
 

0.37 

Time 0.57 0.29 -0.01 -0.05 0.05 0.07 0.37 
 

 

Table 5 Precision rate (PR) before and after post-processing 
 1 Jan 2 Jan 4 Jan 6 Jan 7 Jan 15 Dec Total 

R
aw

 d
at

a 

𝑇𝑃 745 196 31 206 29 363 1570 

𝐹𝑃 227 184 127 178 44 140 900 

𝐹𝑁 1537 606 109 506 88 933 3779 

𝑃𝑅% 77 52 20 54 40 72 64 

𝑅𝑅% 33 24 22 29 25 28 29 

P
o

st
-p

ro
c.

 

𝑇𝑃 658 150 30 178 22 315 1353 

𝐹𝑃 64 10 60 39 11 68 252 

𝐹𝑁𝑝𝑝
1 87 46 1 28 7 48 217 

𝑃𝑅%  91 94 33 82 67 82 85 

𝑅𝑅𝑝𝑝
2% 88 77 97 86 76 87 86 

𝑃𝑅 improvement 14 42 13 28 27 10 21 

1 𝐹𝑁𝑝𝑝denotes the false estimations of the precision matrices which results in missing some 𝑇𝑃. 725 

2 𝑅𝑅𝑝𝑝denotes the recall rate of post processing which corresponds to 𝐹𝑁𝑝𝑝. 726 

 727 
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 731 

 732 

Fig 1 a) Flowchart of the detection software and b) an example of frame on which these different flowchart steps 

are applied. 

 

 733 

Fig 2 Static probability mask, a) Gaussian distribution of light intensity range for a piece of wood, b) employment 

of probability mask on the sample frame. 
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 734 

Fig 3 Dynamic probability mask, a) updating function 𝑯(∆𝒕, 𝑰) adapted from Ali et al. (2011) and b) employment 

of probability mask on the sample frame. 

 735 

Fig 4 a) Object extraction by (i) combining static and dynamic masks and (ii) applying a threshold to retain only 

high-probability pixels. b) Object tracking as a filter to deal with partly immersed objects and to distinguish 

between moving objects from static waves. 
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 736 

 737 

Fig 5 Image rectification, process. 3D view of non-colinear GCPs in metric coordinates (a), their corresponding 

localization within the image (b), and the relative 2D metric coordinates for a given water level (c). (b,c) A practical 

example of the transformation of the coordinates is presented. The different solid lines represent the successive 

detection in a set of consecutive frames. 
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 738 

Fig 6 User interface of the detection software. 

 739 

Fig 7 User interface of the detection module of automatic detection software. 
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 740 

Fig 8 User interface of the annotation module of automatic detection software. 
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 741 

Fig 9 Study site at Pont de Chazey: a) Location of the Ain River catchment in France and location of the gauging 

and meteorological stations, b) camera position and its view angle in yellow, c) overview of the gauging station 

with the camera installation point. 
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 742 

Fig 10 Rectifying transformation matrix at low flow level with camera at (0,0,0). 

 743 

Fig 11 Daily mean discharge series for monitoring period from 1st to 7th January and in 15th December. 
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 744 

Fig 12 Different light conditions during (a) morning, (b) noon and (c) late afternoon, results in different frame 

roughness’s and different detection performances. 

 745 

Fig 13 Wood position can highly affect the quality of detection. Pieces that are passing in front of the camera are 

detected much better than the pieces far from the camera. 
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 746 

Fig 14 Correction matrices: a, b, c) wood lengths as a function of the distance from the camera, d, e, f) detection 

position, g, h, i) flow discharges during the daytime, and j, k, l) light and dark roughness’s. The first column shows 

number of all annotated pieces. Second and third columns show Precision and Recall rates of the software 

respectively.  
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 747 

Fig 15 Effect of using different combinations of 𝑷𝑹 matrices on precision improvement compared with 1:1 line(no 

improvement), 10% and 20% improvement lines. 

 748 

Fig 16 a) Steps to post-process software automatic detections: (i) raw detections (𝑻𝑷 + 𝑭𝑷 red line), (ii) Only true 

positives using the 𝑷𝑹 improvement process (𝑻𝑷 blue dashed line), and (iii) modeling false negatives (blue line). 

Operator annotation (green line is used as a benchmark). b) The correlation coefficient between operator 

annotation and modeled 𝑻𝑷 to find an optimum threshold length for 𝑹𝑹 improvement. 
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 749 

Fig 17 Comparison of the total volume of wood between operator annotation as the benchmark and raw data (red 

scatters) and post-processed data (blue scatters), compared with a 1:1 line. 
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